On algebraic and geometric properties of spectral convex bodies

Raman Sanyal
Goethe-Universität Frankfurt

joint work with James Saunderson (Monash University)

Between you and I

How many convex bodies do you really know?
Between you and I

How many convex bodies do you really know?

[A convex body is a convex and compact set.]
Between you and I

How many convex bodies do you really know?
[A convex body is a convex and compact set.]

How many of them are not polytopes?
[A polytope is the convex hull of finitely many points. Equivalently, the bounded set of solutions to finitely many linear inequalities.]
Between you and I

How many convex bodies do you really know?

[A convex body is a convex and compact set.]

How many of them are not polytopes?

[A polytope is the convex hull of finitely many points. Equivalently, the bounded set of solutions to finitely many linear inequalities.]

Let me introduce you to

Spectral convex bodies
Between you and I

How many convex bodies do you really know?

[A convex body is a convex and compact set.]

How many of them are not polytopes?

[A polytope is the convex hull of finitely many points. Equivalently, the bounded set of solutions to finitely many linear inequalities.]

Let me introduce you to

Spectral convex bodies

Focus today:

- Operations and metric properties
 Minkowski sums, polarity, volume and Steiner polynomials
- Geometric and algebraic boundary
 faces, algebraic degree, hyperbolicity
- Representations
 spectrahedra and spectrahedral shadows
Spectral convex sets

\mathfrak{S}_d group of permutations acting on \mathbb{R}^d

$$\sigma \cdot (x_1, \ldots, x_d) := (x_{\sigma(1)}, \ldots, x_{\sigma(d)})$$
Spectral convex sets

\mathfrak{S}_d group of permutations acting on \mathbb{R}^d

$$\sigma \cdot (x_1, \ldots, x_d) := (x_{\sigma(1)}, \ldots, x_{\sigma(d)}).$$

A convex set $K \subseteq \mathbb{R}^d$ is symmetric if $\sigma K = K$ for all $\sigma \in \mathfrak{S}_d$.
Spectral convex sets

\(\mathcal{S}_d \) group of permutations acting on \(\mathbb{R}^d \)

\[\sigma \cdot (x_1, \ldots, x_d) := (x_{\sigma(1)}, \ldots, x_{\sigma(d)}) \] .

A convex set \(K \subseteq \mathbb{R}^d \) is symmetric if \(\sigma K = K \) for all \(\sigma \in \mathcal{S}_d \).

Symmetric matrices \(S_2 \mathbb{R}^d = \{ A \in \mathbb{R}^{d \times d} : A^t = A \} \).
Spectral convex sets

\(\mathcal{G}_d \) group of permutations acting on \(\mathbb{R}^d \)

\[\sigma \cdot (x_1, \ldots, x_d) := (x_{\sigma(1)}, \ldots, x_{\sigma(d)}) \, . \]

A convex set \(K \subseteq \mathbb{R}^d \) is symmetric if \(\sigma K = K \) for all \(\sigma \in \mathcal{G}_d \).

Symmetric matrices \(S_2 \mathbb{R}^d = \{ A \in \mathbb{R}^{d \times d} : A^t = A \} \).

Spectrum \(\lambda(A) = (\lambda_1, \lambda_2, \ldots, \lambda_d) \in \mathbb{R}^d \) are the \(d \) real eigenvalues of \(A \in S_2 \mathbb{R}^d \).
Spectral convex sets

\mathcal{G}_d group of permutations acting on \mathbb{R}^d

\[\sigma \cdot (x_1, \ldots, x_d) \ := \ (x_{\sigma(1)}, \ldots, x_{\sigma(d)}) . \]

A convex set $K \subseteq \mathbb{R}^d$ is symmetric if $\sigma K = K$ for all $\sigma \in \mathcal{G}_d$.

Symmetric matrices $S_2\mathbb{R}^d = \{ A \in \mathbb{R}^{d \times d} : A^t = A \}$.

Spectrum $\lambda(A) = (\lambda_1, \lambda_2, \ldots, \lambda_d) \in \mathbb{R}^d$ are the d real eigenvalues of $A \in S_2\mathbb{R}^d$.

A spectral convex set is a set of the form

\[\Lambda(K) \ := \ \{ A \in S_2\mathbb{R}^d : \lambda(A) \in K \} , \]

where K is a symmetric convex set.
Spectral convex sets

\mathcal{S}_d group of permutations acting on \mathbb{R}^d

$$\sigma \cdot (x_1, \ldots, x_d) := (x_{\sigma(1)}, \ldots, x_{\sigma(d)}).$$

A convex set $K \subseteq \mathbb{R}^d$ is symmetric if $\sigma K = K$ for all $\sigma \in \mathcal{S}_d$.

Symmetric matrices $S_2\mathbb{R}^d = \{ A \in \mathbb{R}^{d \times d} : A^t = A \}$.

Spectrum $\lambda(A) = (\lambda_1, \lambda_2, \ldots, \lambda_d) \in \mathbb{R}^d$ are the d real eigenvalues of $A \in S_2\mathbb{R}^d$.

A spectral convex set is a set of the form

$$\Lambda(K) := \{ A \in S_2\mathbb{R}^d : \lambda(A) \in K \},$$

where K is a symmetric convex set.

Proposition

If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.
Examples: $\Lambda(K) := \{ A \in S_2 \mathbb{R}^d : \lambda(A) \in K \}$

- Operator norm: $K = \{ x : \|x\|_\infty \leq 1 \} = [-1, 1]^d$

 $$\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_{\text{max}}(A) \leq 1 \}$$
Examples: $\Lambda(K) := \{A \in S_2 \mathbb{R}^d : \lambda(A) \in K\}$

- **Operator norm:** $K = \{x : \|x\|_\infty \leq 1\} = [-1, 1]^d$

 $\Lambda(K) = \{A \in S_2 \mathbb{R}^d : \lambda_{\text{max}}(A) \leq 1\}$

- **Nuclear norm:** $K = \{x : \|x\|_1 \leq 1\}$

 $\Lambda(K) = \{A \in S_2 \mathbb{R}^d : |\lambda_1(A)| + \cdots + |\lambda_d(A)| \leq 1\}$
Examples: $\Lambda(K) := \{ A \in S_2 \mathbb{R}^d : \lambda(A) \in K \}$

- **Operator norm:** $K = \{ x : \|x\|_\infty \leq 1 \} = [-1, 1]^d$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_{\text{max}}(A) \leq 1 \}$

- **Nuclear norm:** $K = \{ x : \|x\|_1 \leq 1 \}$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : |\lambda_1(A)| + \cdots + |\lambda_d(A)| \leq 1 \}$

- **Frobenius norm:** $K = B(\mathbb{R}^d) = \{ x : \|x\|_2 \leq 1 \}$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_1(A)^2 + \cdots + \lambda_d(A)^2 \leq 1 \} = B(S_2 \mathbb{R}^d)$
Examples: $\Lambda(K) := \{ A \in S_2 \mathbb{R}^d : \lambda(A) \in K \}$

- **Operator norm:** $K = \{ x : \|x\|_\infty \leq 1 \} = [-1, 1]^d$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_{\max}(A) \leq 1 \}$

- **Nuclear norm:** $K = \{ x : \|x\|_1 \leq 1 \}$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : |\lambda_1(A)| + \cdots + |\lambda_d(A)| \leq 1 \}$

- **Frobenius norm:** $K = B(\mathbb{R}^d) = \{ x : \|x\|_2 \leq 1 \}$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_1(A)^2 + \cdots + \lambda_d(A)^2 \leq 1 \} = B(S_2 \mathbb{R}^d)$

- **PSD cone:** $K = \mathbb{R}^d_{\geq 0}$

 $\Lambda(K) = \{ A \in S_2 \mathbb{R}^d : A \text{ positive semidefinite} \}$
Examples: $\Lambda(K) := \{ A \in S_2 \mathbb{R}^d : \lambda(A) \in K \}$

- **Operator norm:** $K = \{ x : \|x\|_\infty \leq 1 \} = [-1, 1]^d$
 \[
 \Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_{\text{max}}(A) \leq 1 \}
 \]

- **Nuclear norm:** $K = \{ x : \|x\|_1 \leq 1 \}$
 \[
 \Lambda(K) = \{ A \in S_2 \mathbb{R}^d : |\lambda_1(A)| + \cdots + |\lambda_d(A)| \leq 1 \}
 \]

- **Frobenius norm:** $K = B(\mathbb{R}^d) = \{ x : \|x\|_2 \leq 1 \}$
 \[
 \Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda_1(A)^2 + \cdots + \lambda_d(A)^2 \leq 1 \} = B(S_2 \mathbb{R}^d)
 \]

- **PSD cone:** $K = \mathbb{R}^d_{\geq 0}$
 \[
 \Lambda(K) = \{ A \in S_2 \mathbb{R}^d : A \text{ positive semidefinite} \}
 \]

- **Schur-Horn orbitopes** [S-Sottile-Sturmfels’11]: $K = \text{conv}(\mathcal{S}_d \cdot p)$
 \[
 \Lambda(K) = \{ A \in S_2 \mathbb{R}^d : \lambda(A) \text{ majorized by } p \}
 \]
Spectral convex sets

Proposition

If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.
Spectral convex sets

Proposition
If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D : S_2 \mathbb{R}^d \rightarrow \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta : \mathbb{R}^d \rightarrow S_2 \mathbb{R}^d$ diagonal embedding

Lemma
Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.]
Spectral convex sets

Proposition
If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D : S_2^d \rightarrow \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta : \mathbb{R}^d \rightarrow S_2^d$ diagonal embedding

Lemma
Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.]

Proof of Proposition.

- Show $A \in \text{conv}(\Lambda(K))$, then $A \in \Lambda(K)$.

Proposition

If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D : S_2 \mathbb{R}^d \to \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta : \mathbb{R}^d \to S_2 \mathbb{R}^d$ diagonal embedding

Lemma

Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.]
Spectral convex sets

Proposition
If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D: S_2^d \rightarrow \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta: \mathbb{R}^d \rightarrow S_2^d$ diagonal embedding

Lemma
Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.

Proof of Proposition.

- Show $A \in \text{conv}(\Lambda(K))$, then $A \in \Lambda(K)$.
- $O(d)$-invariance: $g\Lambda(K)g^t = \Lambda(K)$ for all $g \in O(d)$.
- Wlog $A = \delta(p)$ diagonal.
Spectral convex sets

Proposition
If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D : S_2^{d \times d} \to \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta : \mathbb{R}^d \to S_2^{d \times d}$ diagonal embedding

Lemma
Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.

Proof of Proposition.

- Show $A \in conv(\Lambda(K))$, then $A \in \Lambda(K)$.
- $O(d)$-invariance: $g\Lambda(K)g^t = \Lambda(K)$ for all $g \in O(d)$.
- Wlog $A = \delta(p)$ diagonal.
- $A = \sum_i \mu_i A_i$ for $A_i \in \Lambda(K)$ implies $p = D(A) = \sum_i \mu_i D(A_i) \in K$.
Spectral convex sets

Proposition
If K is a symmetric convex set/body, then $\Lambda(K)$ is a convex set/body.

$D : S_2^d \rightarrow \mathbb{R}^d$ diagonal projection $D(A) = (A_{11}, A_{22}, \ldots, A_{dd})$

$\delta : \mathbb{R}^d \rightarrow S_2^d$ diagonal embedding

Lemma
Let K be a symmetric convex set. Then

$$D(\Lambda(K)) = K = D(\Lambda(K) \cap \delta(\mathbb{R}^d)).$$

[Needs Schur’s insight: $D(A)$ is majorized by $\lambda(A)$.]

Proof of Proposition.

- Show $A \in conv(\Lambda(K))$, then $A \in \Lambda(K)$.
- $O(d)$-invariance: $g \Lambda(K) g^t = \Lambda(K)$ for all $g \in O(d)$.
- Wlog $A = \delta(p)$ diagonal.
- $A = \sum_i \mu_i A_i$ for $A_i \in \Lambda(K)$ implies $p = D(A) = \sum_i \mu_i D(A_i) \in K$.
- Again by Lemma: $A = \delta(p) \in \Lambda(K)$.

Rich class of convex sets

Let $K, L \subset \mathbb{R}^d$ be symmetric closed convex sets.

- **Intersections**

 $$\Lambda(K) \cap \Lambda(L) = \Lambda(K \cap L).$$
Rich class of convex sets

Let $K, L \subset \mathbb{R}^d$ be symmetric closed convex sets.

- **Intersections**
 \[\Lambda(K) \cap \Lambda(L) = \Lambda(K \cap L). \]

- **Minkowski sums**: $K + L := \{ p + q : p \in K, q \in L \}$
 \[\Lambda(K) + \Lambda(L) = \Lambda(K + L). \]
Rich class of convex sets

Let $K, L \subset \mathbb{R}^d$ be symmetric closed convex sets.

- **Intersections**
 \[\Lambda(K) \cap \Lambda(L) = \Lambda(K \cap L). \]

- **Minkowski sums**: $K + L := \{p + q : p \in K, q \in L\}$
 \[\Lambda(K) + \Lambda(L) = \Lambda(K + L). \]

- **Convex hulls**: $K \vee L := \text{conv}(K \cup L)$
 \[\Lambda(K) \vee \Lambda(L) = \Lambda(K \vee L). \]

 [Hint: $K \vee L = \bigcup_{0 \leq \mu \leq 1}(1 - \mu)K + \mu L$.]
Rich class of convex sets

Let $K, L \subset \mathbb{R}^d$ be symmetric closed convex sets.

- **Intersections**
 \[\Lambda(K) \cap \Lambda(L) = \Lambda(K \cap L). \]

- **Minkowski sums**: $K + L := \{ p + q : p \in K, q \in L \}$
 \[\Lambda(K) + \Lambda(L) = \Lambda(K + L). \]

- **Convex hulls**: $K \lor L := \text{conv}(K \cup L)$
 \[\Lambda(K) \lor \Lambda(L) = \Lambda(K \lor L). \]

 [Hint: $K \lor L = \bigcup_{0 \leq \mu \leq 1} (1 - \mu)K + \mu L$.]

- **Polarity**: $K^\circ = \{ c \in \mathbb{R}^d : \langle c, x \rangle \leq 1 \text{ for all } x \in K \}$
 \[\Lambda(K)^\circ = \Lambda(K^\circ). \]
Support functions

For closed convex set $K \subset \mathbb{R}^d$, the support function is $h_K : \mathbb{R}^d \to \mathbb{R}$

$$h_K(c) := \max\{\langle c, x \rangle : x \in K\}$$
Support functions

For closed convex set $K \subset \mathbb{R}^d$, the support function is $h_K : \mathbb{R}^d \rightarrow \mathbb{R}$

$$h_K(c) := \max\{\langle c, x \rangle : x \in K\}$$

h_K encodes K: $K = \{x : \langle c, x \rangle \leq h_K(c) \text{ for all } c\}$.

Frobenius inner product on $S_2^{\mathbb{R}^d}$:

$$\langle A, B \rangle = \text{tr}(AB).$$

Lemma

If K is closed symmetric convex set and $B \in S_2^{\mathbb{R}^d}$, then $h_{\Lambda(K)}(B) = h_K(\lambda(B))$.

$h_{\Lambda(K)}$ is a spectral convex function in the sense of [Lewis'96].

Minkowski sum: $\Lambda(K) + \Lambda(L) = \Lambda(K + L)$

Polarity: $\Lambda(K)^\circ = \Lambda(K^\circ)$

$$K^\circ = \{c : h_K(c) \leq 1\}.$$
Support functions

For closed convex set $K \subset \mathbb{R}^d$, the support function is $h_K : \mathbb{R}^d \to \mathbb{R}$

$$h_K(c) := \max\{\langle c, x \rangle : x \in K\}$$

h_K encodes K: $K = \{x : \langle c, x \rangle \leq h_K(c) \text{ for all } c\}$.

Frobenius inner product on $S_2\mathbb{R}^d$: $\langle A, B \rangle = \text{tr}(AB)$.

Lemma
If K is closed symmetric convex set and $B \in S_2\mathbb{R}^d$, then

$$h_{\Lambda(K)}(B) = h_K(\Lambda(B)).$$

$h_{\Lambda(K)}$ is a spectral convex function in the sense of [Lewis’96].
Support functions

For closed convex set $K \subset \mathbb{R}^d$, the support function is $h_K : \mathbb{R}^d \rightarrow \mathbb{R}$

$$h_K(c) := \max\{\langle c, x \rangle : x \in K\}$$

h_K encodes K: $K = \{x : \langle c, x \rangle \leq h_K(c) \text{ for all } c\}$.

Frobenius inner product on $S_2\mathbb{R}^d$: $\langle A, B \rangle = \text{tr}(AB)$.

Lemma

If K is closed symmetric convex set and $B \in S_2\mathbb{R}^d$, then

$$h_{\Lambda(K)}(B) = h_K(\lambda(B)).$$

$h_{\Lambda(K)}$ is a spectral convex function in the sense of [Lewis’96].

- Minkowski sum: $\Lambda(K) + \Lambda(L) = \Lambda(K + L)$

$$h_{K+L} = h_K + h_L$$

- Polarity: $\Lambda(K)^\circ = \Lambda(K^\circ)$

$$K^\circ = \{c : h_K(c) \leq 1\}$$
Computation of convex invariants

$K \subset \mathbb{R}^d$ convex body, $B_d = B(\mathbb{R}^d)$ unit ball

Steiner polynomial

$$\text{vol}(K + t \cdot B_d) = \sum_{i=0}^{d} \binom{d}{i} W_{d-i}(K)t^i$$
Computation of convex invariants

\(K \subset \mathbb{R}^d \) convex body, \(B_d = B(\mathbb{R}^d) \) unit ball

Steiner polynomial

\[
\text{vol}(K + t \cdot B_d) = \sum_{i=0}^{d} \binom{d}{i} W_{d-i}(K)t^i
\]

Quermassintegrals \(W_i(K) \sim \) expected volume of projection onto \((d-i)\)-flat

\(W_d \) volume, \(W_{d-1} \) surface area, \(W_1 \) mean width, \(W_0 \) Euler characteristic

Important invariants, hard to compute
Computation of convex invariants

$K \subset \mathbb{R}^d$ convex body, $B_d = B(\mathbb{R}^d)$ unit ball

Steiner polynomial

$$\text{vol}(K + t \cdot B_d) = \sum_{i=0}^{d} \binom{d}{i} W_{d-i}(K)t^i$$

Quermassintegrals $W_i(K) \sim$ expected volume of projection onto $(d-i)$-flat

W_d volume, W_{d-1} surface area, W_1 mean width, W_0 Euler characteristic

Important invariants, hard to compute

Theorem

$$\text{vol}(\Lambda(K) + t \cdot B(S_2 \mathbb{R}^d)) = 2^{\frac{d(d+3)}{2}} \prod_{r=1}^{d} \frac{\pi^{\frac{r}{2}}}{\Gamma\left(\frac{r}{2}\right)} \int_{K+tB_d} \prod_{i<j} |p_i - p_j| dp$$

If K symmetric polytope, then integral effectively computable.
Faces and boundaries

(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

$$K^c := \{ x \in K : \langle c, x \rangle = h_K(c) \} \quad \text{for some } c \in \mathbb{R}^d$$
Faces and boundaries

(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

$$K^c := \{ x \in K : \langle c, x \rangle = h_K(c) \} \quad \text{for some } c \in \mathbb{R}^d$$

Proposition

\mathcal{S}_d-orbits of faces of $K \overset{1\text{-to}-1}{\longleftrightarrow} O(d)$-orbits of faces of $\Lambda(K)$.
Faces and boundaries

(Exposed) Face of full-dimensional convex body \(K \subset \mathbb{R}^d \)

\[K^c := \{ x \in K : \langle c, x \rangle = h_K(c) \} \quad \text{for some} \ c \in \mathbb{R}^d \]

Proposition

\(S_d \)-orbits of faces of \(K \) \(\stackrel{1\text{-to-}1}{\longleftrightarrow} \) \(O(d) \)-orbits of faces of \(\Lambda(K) \).

Algebraic boundary \(\partial_{\text{alg}} K \) is Zariski closure of \(\partial K \), given by \(f_K \in \mathbb{R}[x_1, \ldots, x_d] \).
Faces and boundaries

(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

$$K^c := \{x \in K : \langle c, x \rangle = h_K(c)\} \quad \text{for some } c \in \mathbb{R}^d$$

Proposition

\mathfrak{S}_d-orbits of faces of $K \overset{1\text{-to-1}}{\longleftrightarrow} O(d)$-orbits of faces of $\Lambda(K)$.

Algebraic boundary $\partial_{\text{alg}} K$ is Zariski closure of ∂K, given by $f_K \in \mathbb{R}[x_1, \ldots, x_d]$.

If K symmetric, then f_K symmetric $f_K(\sigma \cdot x) = f_K(x)$ for all $\sigma \in \mathfrak{S}_d$.

$f_K = F_K(e_1, \ldots, e_d)$, where e_i are elementary symmetric polynomials.
(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

\[K^c := \{ x \in K : \langle c, x \rangle = h_K(c) \} \quad \text{for some } c \in \mathbb{R}^d \]

Proposition

\mathfrak{S}_d-orbits of faces of K $\overset{1:\text{to}:1}{\longleftrightarrow}$ $O(d)$-orbits of faces of $\Lambda(K)$.

Algebraic boundary $\partial_{\text{alg}} K$ is Zariski closure of ∂K, given by $f_K \in \mathbb{R}[x_1, \ldots, x_d]$.

If K symmetric, then f_K symmetric $f_K(\sigma \cdot x) = f_K(x)$ for all $\sigma \in \mathfrak{S}_d$.

$f_K = F_K(e_1, \ldots, e_d)$, where e_i are elementary symmetric polynomials.

$\det(A + tl) = t^d + \eta_1(A)t^{d-1} + \cdots + \eta_d(A)$

$\eta_i(A)$ fundamental invariants of $O(d)$-action on $S_2\mathbb{R}^d$ (sums of principal minors)
Faces and boundaries

(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

$$K^c := \{ x \in K : \langle c, x \rangle = h_K(c) \} \quad \text{for some } c \in \mathbb{R}^d$$

Proposition

\mathcal{G}_d-orbits of faces of $K \leftrightarrow$ $O(d)$-orbits of faces of $\Lambda(K)$.

Algebraic boundary $\partial_{\text{alg}} K$ is Zariski closure of ∂K, given by $f_K \in \mathbb{R}[x_1, \ldots, x_d]$. If K symmetric, then f_K symmetric $f_K(\sigma \cdot x) = f_K(x)$ for all $\sigma \in \mathcal{G}_d$.

$f_K = F_K(e_1, \ldots, e_d)$, where e_i are elementary symmetric polynomials.

$$\det(A + tl) = t^d + \eta_1(A)t^{d-1} + \cdots + \eta_d(A)$$

$\eta_i(A)$ fundamental invariants of $O(d)$-action on $S_2\mathbb{R}^d$ (sums of principal minors)

Proposition

$$f_{\Lambda(K)}(A) = F_K(\eta_1(A), \ldots, \eta_d(A))$$
Faces and boundaries

(Exposed) Face of full-dimensional convex body $K \subset \mathbb{R}^d$

$$K^c := \{x \in K : \langle c, x \rangle = h_K(c)\} \quad \text{for some } c \in \mathbb{R}^d$$

Proposition

\mathfrak{S}_d-orbits of faces of $K \xleftrightarrow{1-to-1} O(d)$-orbits of faces of $\Lambda(K)$.

Algebraic boundary $\partial_{\text{alg}} K$ is Zariski closure of ∂K, given by $f_K \in \mathbb{R}[x_1, \ldots, x_d]$.

If K symmetric, then f_K symmetric $f_K(\sigma \cdot x) = f_K(x)$ for all $\sigma \in \mathfrak{S}_d$.

$f_K = F_K(e_1, \ldots, e_d)$, where e_i are elementary symmetric polynomials.

$$\det(A + tl) = t^d + \eta_1(A)t^{d-1} + \cdots + \eta_d(A)$$

$\eta_i(A)$ fundamental invariants of $O(d)$-action on $S_2 \mathbb{R}^d$ (sums of principal minors)

Proposition

$$f_{\Lambda(K)}(A) = F_K(\eta_1(A), \ldots, \eta_d(A))$$

Corollary

$\partial_{\text{alg}} \Lambda(K)$ and $\partial_{\text{alg}} K$ have same degree.

If K hyperbolicity cone, then $\Lambda(K)$ is hyperbolicity cone [Bauschke et al.’01]
Spectrahedra

Spectrahedron

\[S = \{ x \in \mathbb{R}^d : B(x) := B_0 + x_1 B_1 + \cdots + x_d B_d \succeq 0 \} , \]

where \(B_0, \ldots, B_d \in S_2 \mathbb{R}^d \) and \(\succeq 0 \) means positive semidefinite.
Spectrahedra

Spectrahedron

\[S = \{ x \in \mathbb{R}^d : B(x) := B_0 + x_1 B_1 + \cdots + x_d B_d \succeq 0 \}, \]

where \(B_0, \ldots, B_d \in S_2 \mathbb{R}^d \) and \(\succeq 0 \) means positive semidefinite.

Semidefinite programming

\[
\begin{align*}
\max & \quad \langle c, x \rangle \\
\text{subj. to} & \quad B(x) \succeq 0
\end{align*}
\]

generalizes linear programming, fast algorithms
Spectrahedra

Spectrahedron

\[S = \{ x \in \mathbb{R}^d : B(x) := B_0 + x_1 B_1 + \cdots + x_d B_d \succeq 0 \} , \]

where \(B_0, \ldots, B_d \in S_2 \mathbb{R}^d \) and \(\succeq 0 \) means \text{positive semidefinite}.

Semidefinite programming

\[
\begin{align*}
\text{max} & \quad \langle c, x \rangle \\
\text{subj. to} & \quad B(x) \succeq 0
\end{align*}
\]

generalizes linear programming, fast algorithms
generalize polyhedra, many favorable properties, many important examples
Spectrahedra

Spectrahedron

\[S = \{ x \in \mathbb{R}^d : B(x) := B_0 + x_1 B_1 + \cdots + x_d B_d \succeq 0 \}, \]

where \(B_0, \ldots, B_d \in S_2 \mathbb{R}^d \) and \(\succeq 0 \) means positive semidefinite.

Semidefinite programming

\[
\begin{align*}
\max & \quad \langle c, x \rangle \\
\text{subj. to} & \quad B(x) \succeq 0
\end{align*}
\]

generalizes linear programming, fast algorithms

generalize polyhedra, many favorable properties, many important examples

For example operator/nuclear/Frobenius unit balls are spectrahedra
Spectrahedra

Spectrahedron

\[S = \{ x \in \mathbb{R}^d : B(x) := B_0 + x_1 B_1 + \cdots + x_d B_d \succeq 0 \}, \]

where \(B_0, \ldots, B_d \in S_2 \mathbb{R}^d \) and \(\succeq 0 \) means positive semidefinite.

Semidefinite programming

\[
\begin{align*}
\max & \quad \langle c, x \rangle \\
\text{subj. to} & \quad B(x) \succeq 0
\end{align*}
\]

generalizes linear programming, fast algorithms

generalize polyhedra, many favorable properties, many important examples

For example operator/nuclear/Frobenius unit balls are spectrahedra

Theorem

If \(K \) is a polyhedron, then \(\Lambda(K) \) is a spectrahedron.
Schur-Horn orbitopes are spectrahedra

Let \(p = (p_1 \geq p_2 \geq \cdots \geq p_d) \)

Permutahedron \(\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}): \sigma \in \mathfrak{S}_d\} \).
Schur-Horn orbitopes are spectrahedra

Let $p = (p_1 \geq p_2 \geq \cdots \geq p_d)$

Permutahedron $\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}) : \sigma \in \mathcal{S}_d\}$.

Proposition

$x \in \Pi(p)$ if and only if x majorized by p. That is, $\sum_i x_i = \sum_i p_i$

$$\sum_{i=1}^{\left|J\right|} p_i \geq \sum_{i \in J} x_i \quad \text{for all} \; J \subseteq \{1, \ldots, d\}.$$
Schur-Horn orbitopes are spectrahedra

Let \(p = (p_1 \geq p_2 \geq \cdots \geq p_d) \)

Permutahedron \(\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}) : \sigma \in S_d\} \).

Proposition

\(x \in \Pi(p) \) if and only if \(x \) majorized by \(p \). That is, \(\sum_i x_i = \sum_i p_i \)

\[
\sum_{\substack{|J| \leq k}} p_i \geq \sum_{i \in J} x_i \quad \text{for all } J \subseteq \{1, \ldots, d\}.
\]

\(k \)-th linearized Schur functor: linear map \(\mathcal{L}_k : S_2\mathbb{R}^d \to S_2(\wedge^k \mathbb{R}^d) \)
Schur-Horn orbitopes are spectrahedra

Let \(p = (p_1 \geq p_2 \geq \cdots \geq p_d) \)

Permutahedron \(\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}) : \sigma \in \mathfrak{S}_d\} \).

Proposition

\(x \in \Pi(p) \) if and only if \(x \) majorized by \(p \). That is, \(\sum_i x_i = \sum_i p_i \)

\[\sum_{i=1}^{\text{|J|}} p_i \geq \sum_{i \in J} x_i \quad \text{for all } J \subseteq \{1, \ldots, d\}. \]

\(k \)-th linearized Schur functor: linear map \(L_k : S_2 \mathbb{R}^d \to S_2(\bigwedge^k \mathbb{R}^d) \)

\(\binom{d}{k} \) eigenvalues of \(L_k(A) \) are \(\sum_{i \in J} \lambda_i(A) \) for \(|J| = k \).
Schur-Horn orbitopes are spectrahedra

Let \(p = (p_1 \geq p_2 \geq \cdots \geq p_d) \)

Permutahedron \(\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}) : \sigma \in \mathfrak{S}_d\} \).

Proposition

\(x \in \Pi(p) \) if and only if \(x \) majorized by \(p \). That is, \(\sum_i x_i = \sum_i p_i \)

\[
\sum_{i=1}^{\left| J \right|} p_i \geq \sum_{i \in J} x_i \quad \text{for all} \ J \subseteq \{1, \ldots, d\}.
\]

\(k \)-th linearized Schur functor: linear map \(\mathcal{L}_k : S_2 \mathbb{R}^d \rightarrow S_2(\wedge^k \mathbb{R}^d) \)

\(\binom{d}{k} \) eigenvalues of \(\mathcal{L}_k(A) \) are \(\sum_{i \in J} \lambda_i(A) \) for \(|J| = k \).

Theorem (S-Sottile-Sturmfels’11)

Let \(A \in S_2 \mathbb{R}^d \). Then \(A \in \Lambda(\Pi(p)) \) if and only if \(\text{tr}(A) = \sum_i p_i \) and

\[
(p_1 + \cdots + p_k) \cdot \text{Id} - \mathcal{L}_k(A) \succeq 0
\]

for all \(0 < k < d \).
Schur-Horn orbitopes are spectrahedra

Let $p = (p_1 \geq p_2 \geq \cdots \geq p_d)$

Permutahedron $\Pi(p) = \text{conv}\{(p_{\sigma(1)}, \ldots, p_{\sigma(d)}) : \sigma \in \mathcal{S}_d\}$.

Proposition

$x \in \Pi(p)$ if and only if x majorized by p. That is, $\sum_i x_i = \sum_i p_i$

$$\sum_{i=1}^{\vert J \vert} p_i \geq \sum_{i \in J} x_i \quad \text{for all } J \subseteq \{1, \ldots, d\}.$$

k-th linearized Schur functor: linear map $L_k : S_2 \mathbb{R}^d \rightarrow S_2(\wedge^k \mathbb{R}^d)$

$\binom{d}{k}$ eigenvalues of $L_k(A)$ are $\sum_{i \in J} \lambda_i(A)$ for $\vert J \vert = k$.

Theorem (S-Sottile-Sturmfels’11)

Let $A \in S_2 \mathbb{R}^d$. Then $A \in \Lambda(\Pi(p))$ if and only if $\text{tr}(A) = \sum_i p_i$ and

$$(p_1 + \cdots + p_k) \cdot \text{Id} - L_k(A) \succeq 0$$

for all $0 < k < d$.

Schur-Horn orbitope is a spectrahedron of order $2^d - 2$.

For p generic, algebraic degree of $\Pi(p)$ is $2^d - 2$.
Spectral polyhedra

\(a \in \mathbb{R}^d, \ b \in \mathbb{R} \) define

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in S_d \} . \]
Spectral polyhedra

\(a \in \mathbb{R}^d, \ b \in \mathbb{R}\) define

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in S_d \} \, .\]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b_i}\)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L)\), suffices to show that \(\Lambda(P_{a,b})\) is spectrahedron.
Spectral polyhedra

\(a \in \mathbb{R}^d, b \in \mathbb{R} \) define

\[
P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathcal{G}_d \}.
\]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b_i} \)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Question

For \(a \in \mathbb{R}^d \), is there a linear map \(\mathcal{L}_a : S_2\mathbb{R}^d \to S_2\mathbb{R}^{d!} \) such that the \(d! \) eigenvalues of \(\mathcal{L}_a(A) \) are \(\langle \sigma \cdot a, \lambda(A) \rangle \) for \(\sigma \in \mathcal{G}_d \)?
Spectral polyhedra

\[a \in \mathbb{R}^d, \ b \in \mathbb{R} \text{ define} \]

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathcal{G}_d \}. \]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b_i} \)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Question

For \(a \in \mathbb{R}^d \), is there a linear map \(\mathcal{L}_a : S_2 \mathbb{R}^d \to S_2 \mathbb{R}^{d!} \) such that the \(d! \)
eigenvalues of \(\mathcal{L}_a(A) \) are \(\langle \sigma \cdot a, \lambda(A) \rangle \) for \(\sigma \in \mathcal{G}_d \)?

If yes, then

\[\Lambda(P_{a,b}) = \{ A \in S_2 \mathbb{R}^d : b \cdot \text{Id} - \mathcal{L}_a(A) \succeq 0 \}. \]
Spectral polyhedra

\(a \in \mathbb{R}^d, b \in \mathbb{R} \) define

\(P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathfrak{S}_d \} \).

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b_i} \).

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Question

For \(a \in \mathbb{R}^d \), is there a linear map \(\mathcal{L}_a : S_2 \mathbb{R}^d \to S_2 \mathbb{R}^d ! \) such that the \(d! \) eigenvalues of \(\mathcal{L}_a(A) \) are \(\langle \sigma \cdot a, \lambda(A) \rangle \) for \(\sigma \in \mathfrak{S}_d \)?

If yes, then

\[\Lambda(P_{a,b}) = \{ A \in S_2 \mathbb{R}^d : b \cdot \text{Id} - \mathcal{L}_a(A) \succeq 0 \} . \]

Yes, for \(d = 2 \): \(A \mapsto \mathcal{L}_a(A) = a_1 A + a_2 A^{\text{adj}} \)
Spectral polyhedra

\(a \in \mathbb{R}^d, \ b \in \mathbb{R} \) define

\[
P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathcal{S}_d \}.
\]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b} \)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Assume \(a = (a_1 \geq a_2 \geq \cdots \geq a_d) \)
Spectral polyhedra

\(a \in \mathbb{R}^d, \ b \in \mathbb{R} \) define

\[
P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathcal{S}_d \}.
\]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b} \)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Assume \(a = (a_1 \geq a_2 \geq \cdots \geq a_d) \)

numerical chain \(\mathcal{I} = (I_1, I_2, \ldots, I_d) \) where \(I_k \) is \(k \)-subset of \(\{1, \ldots, d\} \)
Spectral polyhedra

$a \in \mathbb{R}^d$, $b \in \mathbb{R}$ define

$$P_{a,b} = \{x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathcal{S}_d \}.$$

Symmetric polyhedra are of the form $P = \bigcap_i P_{a_i,b}$

Since $\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L)$, suffices to show that $\Lambda(P_{a,b})$ is spectrahedron.

Assume $a = (a_1 \geq a_2 \geq \cdots \geq a_d)$

numerical chain $\mathcal{I} = (l_1, l_2, \ldots, l_d)$ where l_k is k-subset of $\{1, \ldots, d\}$

Define

$$a^\mathcal{I} := (a_1 - a_2)1_{l_1} + (a_2 - a_3)1_{l_1} + \cdots + a_d1_{l_d},$$

where $1_{l_i} \in \{0, 1\}^d$ are characteristic vectors.
Spectral polyhedra

\(a \in \mathbb{R}^d, \ b \in \mathbb{R} \) define

\[
P_{a,b} = \{ x \in \mathbb{R}^d : \langle \sigma \cdot a, x \rangle \leq b \text{ for all } \sigma \in \mathbb{S}_d \}.
\]

Symmetric polyhedra are of the form \(P = \bigcap_i P_{a_i,b} \)

Since \(\Lambda(K \cap L) = \Lambda(K) \cap \Lambda(L) \), suffices to show that \(\Lambda(P_{a,b}) \) is spectrahedron.

Assume \(a = (a_1 \geq a_2 \geq \cdots \geq a_d) \)

numerical chain \(\mathcal{I} = (l_1, l_2, \ldots, l_d) \) where \(l_k \) is \(k \)-subset of \(\{1, \ldots, d\} \)

Define

\[
a^\mathcal{I} := (a_1 - a_2) \mathbf{1}_{l_1} + (a_2 - a_3) \mathbf{1}_{l_1} + \cdots + a_d \mathbf{1}_{l_d},
\]

where \(\mathbf{1}_{l_j} \in \{0, 1\}^d \) are characteristic vectors.

If \(\mathcal{I} \) is a chain, that is, \(l_1 \subset l_2 \subset \cdots \subset l_d \), then \(a^\mathcal{I} = \sigma \cdot a \) for some \(\sigma \in \mathbb{S}_d \).

Proposition

\[
P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^\mathcal{I}, x \rangle \leq b \text{ for } \mathcal{I} \text{ numerical chain} \}.
\]
Spectral polyhedra

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^I, x \rangle \leq b \text{ for } I \text{ numerical chain} \}. \]
Spectral polyhedra

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^I, x \rangle \leq b \text{ for } I \text{ numerical chain} \} . \]

Recall that for \(A, B \in S_2\mathbb{R}^d \), \(A \otimes B \) is symmetric \(d^2 \times d^2 \)-matrix with eigenvalues \(\lambda_i(A) \cdot \lambda_j(B) \) for \(1 \leq i, j \leq d \).
Spectral polyhedra

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^I, x \rangle \leq b \text{ for } I \text{ numerical chain} \} . \]

Recall that for \(A, B \in S_2 \mathbb{R}^d \), \(A \otimes B \) is symmetric \(d^2 \times d^2 \)-matrix with eigenvalues \(\lambda_i(A) \cdot \lambda_j(B) \) for \(1 \leq i, j \leq d \)

Define \(\hat{\mathcal{L}}_a : \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \to \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \) by
Spectral polyhedra

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^I, x \rangle \leq b \text{ for } I \text{ numerical chain} \}. \]

Recall that for \(A, B \in S_2 \mathbb{R}^d \), \(A \otimes B \) is symmetric \(d^2 \times d^2 \)-matrix with eigenvalues \(\lambda_i(A) \cdot \lambda_j(B) \) for \(1 \leq i, j \leq d \)

Define \(\hat{\mathcal{L}}_a : \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \rightarrow \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \) by

\[\hat{\mathcal{L}}_a(A) := \sum_{j=1}^{d} (a_j - a_{j+1}) \text{Id}_{\bigwedge^1 \mathbb{R}^d} \otimes \cdots \otimes \text{Id}_{\bigwedge^{j-1} \mathbb{R}^d} \otimes \mathcal{L}_j(A) \otimes \cdots \otimes \text{Id}_{\bigwedge^d \mathbb{R}^d} \]

Eigenvalues of \(\hat{\mathcal{L}}_a(A) \) are \(\langle a^I, \lambda(A) \rangle \) for all \(I \) numerical chains.
Spectral polyhedra

\[P_{a,b} = \{ x \in \mathbb{R}^d : \langle a^I, x \rangle \leq b \text{ for } I \text{ numerical chain} \}. \]

Recall that for \(A, B \in S_2 \mathbb{R}^d \), \(A \otimes B \) is symmetric \(d^2 \times d^2 \)-matrix with eigenvalues \(\lambda_i(A) \cdot \lambda_j(B) \) for \(1 \leq i,j \leq d \)

Define \(\hat{\mathcal{L}}_a : \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \to \bigwedge^1 \mathbb{R}^d \otimes \bigwedge^2 \mathbb{R}^d \otimes \cdots \otimes \bigwedge^d \mathbb{R}^d \) by

\[
\hat{\mathcal{L}}_a(A) := \sum_{j=1}^{d} (a_j - a_{j+1}) \text{Id}_{\bigwedge^1 \mathbb{R}^d} \otimes \cdots \otimes \text{Id}_{\bigwedge^{j-1} \mathbb{R}^d} \otimes \mathcal{L}_j(A) \otimes \cdots \otimes \text{Id}_{\bigwedge^d \mathbb{R}^d}
\]

Eigenvalues of \(\hat{\mathcal{L}}_a(A) \) are \(\langle a^I, \lambda(A) \rangle \) for all \(I \) numerical chains.

Theorem

If \(P = P_{a_1,b_1} \cap \cdots \cap P_{a_M,b_M} \) is a symmetric polyhedron, then

\[
\Lambda(P) = \{ A \in S_2 \mathbb{R}^d : b_i \cdot \text{Id} - \hat{\mathcal{L}}_{a_i}(A) \succeq 0 \text{ for } i = 1, \ldots, M \}.
\]
Spectrahedral shadows

\[\Lambda(P) = \{ A \in S_2 \mathbb{R}^d : b_i \cdot \Id - \hat{L}_{a_i}(A) \succeq 0 \text{ for } i = 1, \ldots, M \} \]

is a spectrahedron of order \(M \cdot 2^{d^2} \).
Spectrahedra shadows

\[\Lambda(P) = \{ A \in S_2 \mathbb{R}^d : b_i \cdot \text{Id} - \hat{\mathcal{L}}_{a_i}(A) \succeq 0 \text{ for } i = 1, \ldots, M \} \]

is a spectrahedron of order \(M \cdot 2^{d^2} \).

In contrast: \(\Lambda(P) \) has algebraic degree \(M \cdot d! \).
Spectrahedra shadows

\[\Lambda(P) = \{ A \in S_2 \mathbb{R}^d : b_i \cdot \text{Id} - \hat{L}_{a_i}(A) \succeq 0 \text{ for } i = 1, \ldots, M \} \]

is a spectrahedron of order \(M \cdot 2^{d^2} \).

In contrast: \(\Lambda(P) \) has algebraic degree \(M \cdot d! \).

Spectrahedral shadow is a projection of spectrahedron

\[S = \{ x \in \mathbb{R}^d : \exists y \in \mathbb{R}^e \text{ such that } B(x) + B'(y) \succeq 0 \} \]

In contrast to polyhedra, spectrahedral shadows are in general not spectrahedra.
Spectrahedra shadows

\[\Lambda(P) = \{ A \in S_2 \mathbb{R}^d : b_i \cdot \text{Id} - \hat{L}_{a_i}(A) \succeq 0 \text{ for } i = 1, \ldots, M \} \]

is a spectrahedron of order \(M \cdot 2^{d^2} \).

In contrast: \(\Lambda(P) \) has algebraic degree \(M \cdot d! \).

Spectrahedral shadow is a projection of spectrahedron

\[S = \{ x \in \mathbb{R}^d : \exists y \in \mathbb{R}^e \text{ such that } B(x) + B'(y) \succeq 0 \} . \]

In contrast to polyhedra, spectrahedral shadows are in general not spectrahedra.

Using a result of Ben-Tal and Nemirovski, we can show

Theorem

If \(K \subset \mathbb{R}^d \) is a symmetric spectrahedral shadow of order \(r \), then \(\Lambda(P) \) is the projection of a spectrahedron of order \(r + 2d^2 - 2d - 2 \).

Similarly, if \(K \) is a symmetric polyhedron with \(r \) orbits of facets.
Spectral zonotopes and spectral arrangements?

Line segment $[-z, z]$ for $z \in \mathbb{R}^d \setminus 0$
Spectral zonotopes and spectral arrangements?

Line segment $[-z, z]$ for $z \in \mathbb{R}^d \setminus 0$

Zonotope

$$Z = [-z_1, z_1] + \cdots + [-z_m, z_m]$$
Spectral zonotopes and spectral arrangements?

Line segment \([-z, z]\) for \(z \in \mathbb{R}^d \setminus 0\)

Zonotope

\[Z = [-z_1, z_1] + \cdots + [-z_m, z_m] \]

Important in convex geometry, geometric combinatorics, spline theory, ...

The standard permutahedron for \(p = (1, 2, \ldots, d)\)

\[\Pi(p) = \text{conv}(S_d \cdot p) = p + \sum_{1 \leq i < j \leq d} [-(e_i - e_j), e_i - e_j] \]

Nice formulas for volumes and Steiner polynomials, ...
Spectral zonotopes and spectral arrangements?

Line segment \([-z, z]\) for \(z \in \mathbb{R}^d \setminus 0\)

Zonotope

\[
Z = [-z_1, z_1] + \cdots + [-z_m, z_m]
\]

Important in convex geometry, geometric combinatorics, spline theory, ...

The standard permutahedron for \(p = (1, 2, \ldots, d)\)

\[
\Pi(p) = \text{conv}(\mathcal{S}_d \cdot p) = p + \sum_{1 \leq i < j \leq d} [-(e_i - e_j), e_i - e_j]
\]

Nice formulas for volumes and Steiner polynomials, ...

Encode arrangement of hyperplanes \(H_i = z_i^\perp\) for \(i = 1, \ldots, m\)
Spectral zonotopes and spectral arrangements?

Line segment $[-z, z]$ for $z \in \mathbb{R}^d \setminus 0$

Zonotope

$$ Z = [-z_1, z_1] + \cdots + [-z_m, z_m] $$

Important in convex geometry, geometric combinatorics, spline theory, ...

The standard permutahedron for $p = (1, 2, \ldots, d)$

$$ \Pi(p) = \text{conv}(\mathfrak{S}_d \cdot p) = p + \sum_{1 \leq i < j \leq d} [- (e_i - e_j), e_i - e_j] $$

Nice formulas for volumes and Steiner polynomials, ...

Encode arrangement of hyperplanes $H_i = z_i^\perp$ for $i = 1, \ldots, m$

If Z is a symmetric zonotope, then $\Lambda(Z)$ is a spectral zonotope.
Spectral zonotopes and spectral arrangements?

Line segment $[-z, z]$ for $z \in \mathbb{R}^d \setminus 0$

Zonotope

$$Z = [-z_1, z_1] + \cdots + [-z_m, z_m]$$

Important in convex geometry, geometric combinatorics, spline theory, ...

The standard permutahedron for $p = (1, 2, \ldots, d)$

$$\Pi(p) = \text{conv}(\mathfrak{S}_d \cdot p) = p + \sum_{1 \leq i < j \leq d} [-\langle e_i - e_j, e_i - e_j \rangle]$$

Nice formulas for volumes and Steiner polynomials, ...

Encode arrangement of hyperplanes $H_i = z_i^\perp$ for $i = 1, \ldots, m$

If Z is a symmetric zonotope, then $\Lambda(Z)$ is a spectral zonotope.

Encode spectral arrangements

$$\{ A \in S_2 \mathbb{R}^d : \langle \sigma \cdot z_i, \lambda(A) \rangle = 0 \text{ for some } \sigma \in \mathfrak{S}_d \}$$
Spectral zonotopes and spectral arrangements?

Line segment \([-z, z]\) for \(z \in \mathbb{R}^d \setminus 0\)

Zonotope

\[Z = [-z_1, z_1] + \cdots + [-z_m, z_m] \]

Important in convex geometry, geometric combinatorics, spline theory, ...

The standard permutahedron for \(p = (1, 2, \ldots, d)\)

\[\Pi(p) = \text{conv}(S_d \cdot p) = p + \sum_{1 \leq i < j \leq d} [-\langle e_i - e_j, e_i - e_j \rangle, \langle e_i - e_j, e_i - e_j \rangle] \]

Nice formulas for volumes and Steiner polynomials, ...

Encode arrangement of hyperplanes \(H_i = z_i^\perp\) for \(i = 1, \ldots, m\)

If \(Z\) is a symmetric zonotope, then \(\Lambda(Z)\) is a spectral zonotope.

Encode spectral arrangements

\[\{ A \in S_2 \mathbb{R}^d : \langle \sigma \cdot z_i, \lambda(A) \rangle = 0 \text{ for some } \sigma \in S_d \} \]

Question

Is there a nice theory of spectral zonotopes and spectral arrangements?
Spectral convex bodies

A spectral convex set is a set of the form

$$\Lambda(K) := \{ A \in S_2 \mathbb{R}^d : \lambda(A) \in K \},$$

where K is a symmetric convex set.

Proposition

$\Lambda(K)$ is a convex set/body.

- Rich class of convex sets: Closed under intersection, Minkowski sum, convex hull, and polarity.
- Geometric and algebraic structure: Intimately related to that of K; Support functions, orbits of faces, algebraic boundary, hyperbolicity.
- Representations as (projections of) spectrahedra: Spectrahedra when K is a polyhedron; spectrahedral shadow when K is spectrahedral shadow.